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Basic Motivation

Let G be a periodic group.

Main Problem

To obtain information about the structure of G

by looking at the orders of its elements.
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The functions ψ(G ) and o(G )

Let G be a finite group.

Definitions

ψ(G ) :=
∑
x∈G

o(x).

o(G ) :=
1
|G |

∑
x∈G

o(x).

Problem

What can be said about the structure of G

by looking at the values ψ(G ), o(G )?
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Outline of the talk

Let G be a finite group.

• The function ψ(G )

• The function o(G )

• Some other functions related to element orders
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The function ψ(G )

Let G be a finite group.

Definition

ψ(G ) :=
∑
x∈G

o(x).

Remark

|G | ≤ ψ(G ) ≤ |G |2.
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The function ψ(G )

Examples

ψ(S3) = 13.

For, ψ(S3) = 1 · 1 + 3 · 2 + 2 · 3.

ψ(C6) = 21.

For, ψ(C6) = 1 · 1 + 1 · 2 + 2 · 3 + 2 · 6.

where Cn is the cyclic group of order n and S3 is the symmetric group of
degree 3.

Mercede MAJ - University of Salerno Detecting properties of a finite group through the study of some functions on element orders



The function ψ(G )

Examples

ψ(A4) = 31.

For, ψ(A4) = 1 · 1 + 3 · 2 + 8 · 3.

ψ(D10) = 31.

For, ψ(D10) = 1 · 1 + 5 · 2 + 4 · 5.

where An is the alternating group of degree n and Dn is the dihedral
group of degree n.
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The function ψ(G)

Remark

ψ(G ) = ψ(G1) does not imply G ' G1.

Example

Let A = C8 × C2,
B = C2 n C8, where C2 = 〈a〉, C8 = 〈b〉, ba = b5.

Then
ψ(A) = ψ(B) = 87.

Remark

|G | = |G1| and ψ(G ) = ψ(G1) do not imply G ' G1.
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The function ψ(G )

Remark

ψ(G ) = ψ(S3) implies G ' S3.

ψ(G ) = ψ(A5) implies G ' A5.
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The function ψ(G )

Proposition

If G = G1 × G2, then ψ(G ) ≤ ψ(G1)ψ(G2).

If G = G1 × G2, where |G1| and |G2| are coprime, then
ψ(G ) = ψ(G1)ψ(G2).
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The function ψ(G )

Remark

ψ(Cn) =
∑
d |n

dϕ(d),

where ϕ is the Euler’s function.

Proposition

Let p be a prime, α ≥ 0. Then:

ψ(Cpα) = p2α+1+1
p+1 .
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The function ψ(G )

Proposition

Let p be a prime, α ≥ 0. Then: ψ(Cpα) = p2α+1+1
p+1 .

Proof. ψ(Cpα) = 1 + pϕ(p) + p2ϕ(p2) + · · ·+ pα(ϕ(pα)) =

1 + p(p − 1) + p2(p2 − p) + · · ·+ pα(pα − pα−1) =

= 1 + p2 − p + p4 − p3 + · · ·+ p2α − p2α−1 = p2α+1+1
p+1 , as required.//

Corollary

Let n > 1. Write n = pα1
1 · · · pαs

s , p′i s different primes, αi ’s > 0. Then

ψ(Cn) =
∏

i∈{1,··· ,s}

p2αi+1
i + 1
pi + 1

.
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The function ψ(G )

Theorem 1 [H. Amiri, S.M. Jafarian Amiri, M. Isaacs, 2009]

Let G be a finite group, |G | = n. Then

ψ(G ) ≤ ψ(Cn).
Moreover

ψ(G ) = ψ(Cn) if and only if G ' Cn.

H. Amiri, S.M. Jafarian Amiri, I.M. Isaacs, Sums of element
orders in finite groups, Comm. Algebra 37 (2009), 2978-2980.
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The function ψ(G )

Theorem 2 [M. Herzog, P. Longobardi, M. M., 2018]

Let G be a non-cyclic group of order n. Then

ψ(G ) ≤ 7
11ψ(Cn).

Moreover

this bound is best possible.

M. Herzog, P. Longobardi, M. Maj, An exact upper bound for
sums of element orders in non-cyclic finite groups, J. Pure Appl.
Algebra, 222 n. 7 (2018), 1628-1642.
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The function ψ(G )

Remark

The upper bound 7
11 is best possible.

For example,

ψ(C2 × C2) = 7 and ψ(C4) = 11. Therefore

ψ(C2 × C2) =
7
11
ψ(C4).

Moreover,

it is easy to see that if n = 4k for some odd integer k , then

the group G = C2k × C2 satisfies the above equality.
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The function ψ(G )

Theorem 3 [M. Herzog, P. Longobardi, M. M., 2021]

Let G be a non-cyclic group of order n. Then

ψ(G ) = 7
11ψ(Cn)

if and only if

n = 4k with (k , 2) = 1 and G = (C2 × C2)× Ck .

M. Herzog, P. Longobardi, M. Maj, The second maximal
groups with respect to the sum of element orders, J. Pure Appl.
Algebra, 225 n. 3 (2021), 1-12.
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The function ψ(G )

Theorem 4 [M. Herzog, P. Longobardi, M. M., 2021]

Let G be a non-cyclic group of order n and
let q be the smallest prime divisor of n. Then

ψ(G ) ≤ ((q2−1)q+1)(q+1)
q5+1 ψ(Cn)

and the equality holds if and only if

n = q2k with (k , q!) = 1 and G = (Cq × Cq)× Ck .

M. Herzog, P. Longobardi, M. Maj, The second maximal
groups with respect to the sum of element orders, J. Pure Appl.
Algebra, 225 n. 3 (2021), 1-12.
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The function ψ(G )

Theorem [M. Herzog, P. Longobardi, M. M.]

Let G be a non-cyclic group of order n and
let q be the smallest prime divisor of n. Then

ψ(G ) ≤ ((q2−1)q+1)(q+1)
q5+1 ψ(Cn)

and the equality holds if and only if

n = q2k with (k , q!) = 1 and G = (Cq × Cq)× Ck .

Notice that for q = 2 we have:

((22 − 1)2 + 1)(2 + 1)

25 + 1
=

(3 · 2 + 1)3
33

=
7
11
.
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The function ψ - a solvability criterium

Theorem 5 [M. Herzog, P. Longobardi, M. M., 2018 ]

Let G be a finite group of order n and suppose that

ψ(G ) ≥ 1
6.68ψ(Cn).

Then

G is a solvable group.

M. Herzog, P. Longobardi, M. Maj, Two new criteria for
solvability of finite groups,, J. Algebra 511 (2018), 215-226.
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The function ψ - a solvability criterion

Remark

Notice that ψ(A5) = 211 and ψ(C60) = 1617. Therefore

ψ(A5) =
211
1617ψ(C60) <

1
6.68ψ(C60).

Conjecture

If G is a group of order n and

ψ(G ) > 211
1617ψ(Cn),

then G is solvable.

If true, this lower bound is certainly best possible.
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The function ψ - a solvability criterion

Theorem 6 [M. Baniasad Azad, B. Khosravi, 2018]

If G is a group of order n and

ψ(G ) > 211
1617ψ(Cn),

then G is solvable.

Moreover, if G = A5 × Cm, where (30, m) = 1,

then ψ(G ) = 211
1617ψ(Cn) .

M. Baniasad Azad, B. Khosravi, A Criterion for Solvability of a
Finite Group by the Sum of Element Orders, J. Algebra 516 (2018),
115-124.
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The function ψ - a solvability criterion

Theorem [A. Bahri, B. Khosravi, Z. Akhlaghi]

If G is a non-solvable group of order n and

ψ(G ) = 211
1617ψ(Cn),

then G = A5 × Cm, where is (30, m) = 1.

A. Bahri, B. Khosravi, Z. Akhlaghi, A result on the sum of
element orders of a finite group, Arch. Math. (Basel) 114 (1)
(2020), 3-12.
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The function ψ - a nilpotency criterion

Theorem 7 [M. Tărnăuceanu, 2021]

Let G be a group of order n with ψ(G ) > 13
21ψ(Cn).

Then G is nilpotent.

Moreover ψ(G ) = 13
21ψ(Cn) if and only if

then G = S3 × Cm, where is (6, m) = 1.

M. Tărnăuceanu, A criterion for nilpotency of a finite group by the
sum of element orders, Comm. Algebra 49 (4) (2021), 1571-1577.
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The function ψ - a supersolvability criterion

Theorem 9 [M. Baniasad Azad, B. Khosravi, 2021]

Let G be a group of order n with

ψ(G ) > 31
77ψ(Cn).

Then G is supersolvable.

M. Baniasad Azad, B. Khosravi, On two conjectures about the
sim of element orders, Canadian Math. Bull. 65 (4) (2021), 30-38.

Mercede MAJ - University of Salerno Detecting properties of a finite group through the study of some functions on element orders



Proofs - some ingredients

Lemma

If R is a normal cyclic Sylow subgroup of the finite group G ,
then

ψ(G ) ≤ ψ(R)ψ(G/R),

with equality if and only if R is central in G .

Lemma

Let H be a normal subgroup of the finite group G .
Then

ψ(G ) ≤ ψ(G/H)|H |2.

Mercede MAJ - University of Salerno Detecting properties of a finite group through the study of some functions on element orders



Proofs - some ingredients

Theorem [A. Lucchini ]

Let A be a cyclic proper subgroup of G

and let K = coreG (A).

Then [A : K ] < [G : A]

In particular, if |A| ≥ [G : A], then K > 1.
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The function ψ(G ) - minimum

Definition
Let n be a positive integer. Put

Tn := {ψ(H) | |H | = n}

ψ(Cn) is the maximum of Tn.

Problem

What is the structure of G if ψ(G ) is the minimum of Tn?
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The function ψ(G ) - minimum

Remarks

If n = pα for some prime p and some α > 0 and |G | = pα,
then obviously

ψ(G ) is minimum if and only if expG = p.

If p = 2 and ψ(G ) is minimum ,
then G is the elementary abelian group of order 2α.

But there are non-isomorphic groups G and G1 of order pα > p2 ( p > 2)
with ψ(G ) = ψ(G1) minimum.

For instance, the two groups of exponent 3 and order 33.
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The function ψ(G ) - minimum

Problem

What happens in the general case?
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The function ψ(G ) - minimum

Question

If S is a simple group of order n,
is ψ(S) the minimum of Tn?

NO!

There are non-isomorphic simple groups S and S1 such that
|S | = |S1| and ψ(S) 6= ψ(S1).

For instance, the groups A8 and PSL(3, 4) are such that
|A8| = 20160 = |PSL(3, 4)| and
ψ(A8) = 137047 > 103111 = ψ(PSL(3, 4)).
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The function ψ(G ) - minimum

Question [H. Amiri, S.M. Jafarian Amiri, 2011]

If G is a finite non-simple group and S a finite simple group, |G | = |S |.

Is

ψ(S) < ψ(G )?

NO!

Theorem [Y. Marefat, A. Iranmanesh, A. Tehranian, 2013]

Let S = PSL(2, 64) and G = C32 × Sz(8).

Then |G | = |S | and ψ(G ) < ψ(S).
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The function ψ(G ) - minimum

Question

If G is a finite soluble group and S a simple group, |G | = |S |.
Is

ψ(S) < ψ(G )?

NO!
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The function ψ(G ) - minimum

Theorem [M. Jahani, Y. Marefat, H. Refaghat, B.V. Fasaghandisi,
2021]

There exist two finite groups G and S ,

with S simple and G solvable such that
|G | = |S | and ψ(G ) < ψ(S).

M. Jahani, Y. Marefat, H. Refaghat, B.V. Fasaghandisi,
The minimum sum of element orders of finite groups, Int. J. Group
Theory 10 (2) (2021), 55-60.
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The function ψ(G ) - minimum

Theorem [H. Amiri, S.M. Jafarian Amiri, 2011]

Let G be a finite nilpotent group of order n

and assume that there are non-nilpotent groups of order n.

Then there exists a non-nilpotent group K with |K | = |G | such that

ψ(K ) < ψ(G ).
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The function o(G )

Let G be a finite group.

Definition

o(G ) :=
1
|G |

∑
x∈G

o(x).
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The function o(G )

Remark

ψ(G ) ≥ 1+ 2(|G | − 1).

Hence,

o(G ) ≥ 2− 1
|G |
≥ 3

2
.

If G is an elementary abelian 2-group, then

o(G ) = 2− 1
|G |

.
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The function o(G )

Remark

If G is not an elementary abelian 2-group, then

o(G ) ≥ 2+
1
|G |

.

In fact, if x ∈ G with o(x) > 2, then also o(x−1) > 2 and x 6= x−1.

ψ(G ) ≥ 1 + o(x) + o(x−1) + 2(|G | − 3) ≥

1 + 3 + 3 + 2(|G | − 3) = 2|G |+ 1.

Then

o(G ) =
ψ(G )

|G |
≥ 2 +

1
|G |

.
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The function o(G )

Remark

o(G ) ≤ 2 if and only if

G is an elementary abelian 2-group and o(G ) = 2− 1
|G | .

Remark

If |G | is odd, then
o(G ) ≥ 3− 1

|G | ≥
7
3 .
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The function o(G )

Remark

If G = A× B , with (|A|, |B |) = 1 , then

o(G ) = o(A)o(B).

In particular, if A 6= 1 and B 6= 1, then

o(G ) ≥ 7
2 .
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The function o(G )

Remark

If G is a finite group and
N a non-trivial normal subgroup of G , then

o(G/N) < o(G ).
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The function o(G )

Theorem 11 [A. Jaikin-Zapirain, 2011]

Let G be a finite group. Then

k(G ) ≥ o(G ) ≥ o(Z (G )),

where k(G ) is the number of the conjugacy classes of G .

A. Jaikin-Zapirain, On the number of conjugacy classes of finite
nilpotent groups, Adv. Math. 227 (2011), 1129-1143.
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The function o(G )

Conjecture

Let G be a finite p-group (p a prime)
and let N be a normal (abelian) subgroup of G .

Is it true that o(G ) ≥ o(N)
1
2 ?

A. Jaikin-Zapirain, On the number of conjugacy classes of finite
nilpotent groups, Adv. Math. 227 (2011), 1129-1143.

Mercede MAJ - University of Salerno Detecting properties of a finite group through the study of some functions on element orders



The function o(G )

The answer is NO.

Theorem 12 [E. Khukhro, A. Moretó, M. Zarrin, 2021]

Let c > 0 be a real number and let p ≥ 3
c
be a prime. Then

there exists a finite p-group
with a normal abelian subgroup N such that

o(G ) < o(N)c .

E.I. Khukhro, A. Moretó, M. Zarrin, The average element
order and the number of conjugacy classes of a finite group, J.
Algebra 569 (2021), 1-11.
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The function o(G )

Problem

Let G be a finite group such that

o(G ) < o(A5) =
211
60 .

Is G solvable?

E.I. Khukhro, A. Moretó, M. Zarrin, The average element
order and the number of conjugacy classes of a finite group, J.
Algebra 569 (2021), 1-11.
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The function o(G ) - another solvability criterium

The answer is YES.

Theorem 13 [M. Herzog, P. Longobardi, M.M., 2022]

Let G be a finite group. Suppose that

o(G ) ≤ o(A5).

Then either G ' A5 or G is solvable.

M. Herzog, P. Longobardi, M. Maj, On a criterion for
solvability of a finite group, J. Algebra 597 (2022), 1-23.
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The function o(G ) - another solvability criterium

Remark

o(A5) =
211
60 = 3.51666...

Remark

If

o(G ) < o(A5) =
211
60 = 3.51666...,

then G is solvable.
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The function o(G )

Theorem [M.-S. Lazorec, M. Tărnăuceanu, M. Herzog, P.
Longobardi, M.M., 2022]

Let G be a finite group. Suppose that
o(G ) < o(S3).

Then G is an elementary abelian 2-group.

Corollary

There are no finite groups G such that
o(G ) ∈ [2, 13

6 ).

M.-S. Lazorec, M. Tărnăuceanu, On the average order of a
finite group, to appear
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The function o(G )

Corollary

There are no finite groups G such that

o(G ) = 2.

Proposition

There are no finite groups G such that

o(G ) = 3.
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The function o(G )

Corollary

There are no finite groups G such that

o(G ) = 3.

Proof

We know that ψ(G ) is odd. If o(G ) = 3, then |G | is odd.
If every element of G has order 3, then

ψ(G ) = 1 + 3(|G | − 1) and o(G ) = 3− 2
|G | < 3.

Therefore there exists an element c of order 5,

all the non-trivial powers of c have order 5 and

ψ(G ) ≥ 1 + 4 · 5 + 3(|G | − 5) and o(G ) = 3 + 6
|G | > 3.
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The function o(G )

Definition

Imm(o) := {o(G ) | G a finite group}

Then 2, 3 /∈ Imm(o). Also any even number is not in Imm(o).

Problem

Are there integer values in Imm(o)?
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The function o(G )

Theorem [M.-S. Lazorec, M. Tărnăuceanu, 2022]

If G1 ' C5 × (C7 o C3), then o(G1) =
1785
105 = 17.

If G2 ' C17 × (C7 o C3), then o(G2) =
23205
357 = 65.

If G3 ' C85 × (C7 o C3), then o(G3) =
487305
1785 = 273.

If G4 ' C229 × C13, then o(G2) =
13446147

3887 = 285.

If G5 ' C35 × (C43 o C3), then o(G5) =
1864695

4515 = 413.

M.-S. Lazorec, M. Tărnăuceanu, On the average order of a
finite group, to appear
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The function o(G )

Problem

What is the structure of a solvable group G such that
o(G ) ≤ o(A5)?

Remark

o(G ) = o(A5) if and only if G ' A5
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The function o(G )

Problem, A.Y. Olshansky

If c ≥ 0 is any real number, are there
only finitely many simple groups G such that

o(G ) ≤ c?

Remark

The answer is yes if c = o(A5) = 3.5166666 · · · .
What about c = 5?
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The function o(G ) - another supersolvability criterium

Theorem 14 [M. Tărnăuceanu, 2022]

Let G be a finite group. Suppose that

o(G ) < 31
12

Then G is supersolvable.

Moreover o(G ) = 31
12 if and only if G ' A4.

M. Tărnăuceanu, Another criterion for supersolvability of finite
groups, J. Algebra 604 (2022), 682-693.
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Proof of Theorem 13 - some ingredients

Let G be a finite group. Suppose that

o(G ) ≤ o(A5).

Then either G ' A5 or G is solvable.

Proof .

We use induction on |G |.

Write i2(G ) the number of elements of G of order 2.
Write i3(G ) the number of elements of G of order 3.

Then ψ(G ) = 1 · 1 + 2 · i2(G ) + 3 · i3(G ) + · · ·
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Proof of Theorem 13 - some ingredients

Proposition 1 [T.C. Burness, S.D. Scott, 2009]

Let G be a finite group.
If i2(G ) ≥ 3

4 |G |, then G is an elementary abelian 2-group.

Let G be a finite non-solvable group.
Then i2(G ) ≤ 4

15 |G | − 1.

Let G be a finite non-solvable group.
Then i3(G ) ≤ 7

20 |G | − 1.

T.C. Burness, S.D. Scott, On the number of prime order
subgroups of finite groups, J. Australian Math. Soc. 87 (2009),
329-357.
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Proof of Theorem 13 - some ingredients

Let G be a finite group. Write

T (G ) :=
∑

χ∈Irr(G) χ(1).

Then i2(G ) + 1 ≤ T (G ).

Mercede MAJ - University of Salerno Detecting properties of a finite group through the study of some functions on element orders



Proof of Theorem 13 - some ingredients

Lemma 1

Let p be a prime and let G be a finite non-solvable group.

If p ≥ 17 and o(G ) ≤ o(A5),

then G is p-solvable.
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Proof of Theorem 13 - some ingredients

Proposition 2 [W.M. Potter, 1988]

Let G be a finite group and let ϕ an automorphism of G of
order 2.

If ϕ inverts more than 4
15 elements of G ,

then G is solvable.

If ϕ inverts more than 3
4 elements of G ,

then G is abelian.

W.M. Potter, Nonsolvable groups with an automorphism inverting
many elements, Arch. Math. 50 (1988), 292-299.
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Proofs - some ingredients

Lemma 2

Let G be a non-solvable finite group and let ϕ ∈ Aut(G ), of
order 2.

If ϕ inverts more than 2
9 elements of G ,

then either G contains a non-trivial normal soluble subgroup,

or G ' A5.
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Proof of Theorem 13

Let G be a finite group. Suppose that
o(G ) ≤ o(A5).

Then either G ' A5 or G is solvable.

Proof .

Suppose that G is a non-solvable finite group with o(G ) ≤ o(A5),
G 6' A5, of minimal order.

First assume that G is simple.

Then G is not p-solvable for every prime p dividing |G |.

By Lemma 1,

Π(G ) ⊆ {2, 3, 5, 7, 11, 13}.

Finite simple groups with |Π(G )| ≤ 6 are known.

A direct check shows that if o(G ) ≤ o(A5), then G ' A5.
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Proof of Theorem 13

Now suppose that G is not simple.

Then G has a non-trivial proper normal subgroup M.

o(G/M) < o(G ) ≤ o(A5).

Thus, by minimality of |G |, G/M is solvable.

Then there exists a normal subgroup N of G
such that |G/N| = p, p a prime.

From o(G ) ≤ o(A5), we get easily that either p = 2 or p = 3.

Assume that |G/N| = 2.
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Proof of Theorem 13

We can assume G = N〈x〉, o(x) = 2

Then ψ(G ) = ψ(N) + ψ(xN).

Write X := {xn | n ∈ N, o(xn) = 2}.

Obviously o(xn) = 2 if and only if nx = n−1.

Thus Lemma 2 applies:

|X | ≤ 2
9 |N|, or N ' A5,

or N has a non-trivial normal solvable subgroup.

If N ' A5, then it is easy to see that G ' S5, thus o(G ) = 501
120 > o(A5),

a contradiction.

If N has a non-trivial normal solvable subgroup, then G has a non-trivial
normal solvable subgroup S .
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Proof of Theorem 13

From o(G/S) < o(A5), we obtain G/S solvable and then G is solvable,
a contradiction.

Finally, suppose |X | ≤ 2
9 |N|.

Then |xN \ X | ≥ |xN| − 2
9 |N| = 7

9 |N|, and we have

ψ(G ) = ψ(N) + ψ(xN) ≥ ψ(N) + 2|N|+ 2(|xN \ X |), and

ψ(G ) ≥ ψ(N) + 2|N|+ 2 7
9 |N|.

Hence o(G ) ≥ 1
2o(N) + 1 + 7

9 = 1
2o(N) + 1.777.

Thus o(N) < 2(o(G )− 1.777) = 3.486 < o(A5).

By the minimality of G , we have N solvable, then G is solvable,
a contradiction.
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Two other functions on the element orders

Let G be a finite group.

Definitions

ψ(G )′′ :=
1
|G |2

∑
x∈G

o(x).

ρ(G ) :=
∏
x∈G

o(x).
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The function ψ(G )′′

Theorem [M. Tărnăuceanu, 2020]

If ψ′′(G ) ≥ 27
64 , then G is cyclic.

If ψ′′(G ) ≥ 7
16 , then G is abelian.

If ψ′′(G ) ≥ 13
36 , then G is nilpotent.

If ψ′′(G ) ≥ 31
144 , then G is supersolvable.

If ψ′′(G ) ≥ 211
3600 , then G is solvable.

M. Tărnăuceanu, Detecting structural properties of finite groups
by the sum of element orders, Israel J. Math. 238 (2020), 629-637.
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The function ρ(G )

Theorem [M. Garonzi, M. Patassini, 2016]

Let G be a finite group, |G | = n. Then

ρ(G ) ≤ ρ(Cn).
Moreover

ρ(G ) = ρ(Cn) if and only if G ' Cn.

M. Garonzi, M. Patassini, Inequalities detecting structural
properties of a finite group, Comm. Algebra 45 (2016), 677-687.
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The function ρ(G )

Theorem [E. Di Domenico, C. Monetta, M. Noce, 2022]

Let G be a finite non-cyclic group with a Sylow tower, |G | = n.
Then

ρ(G ) ≤ q−qρ(Cn),
where q is the smallest prime dividing n.

E. Di Domenico, C. Monetta, M. Noce, Upper bounds for the
product of element orders of finite groups, to appear
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The function ρ(G )

Problem

Is the result true for any finite group?

Theorem [E. Di Domenico, C. Monetta, M. Noce, 2022]

Let G be a finite nilpotent non-cyclic group, |G | = n. Then

ρ(G ) ≤ q−
n
q
(q−1)ρ(Cn),

where q is the smallest prime dividing n.

E. Di Domenico, C. Monetta, M. Noce, Upper bounds for the
product of element orders of finite groups, to appear
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The function ρ(G )

Problem

Is this bound true for any finite group?

Lemma

Let G = A× B , with |A| and |B | coprime.

Then ρ(G ) = ρ(A)|B|ρ(B)|A|.

E. Di Domenico, C. Monetta, M. Noce, Upper bounds for the
product of element orders of finite groups, to appear
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Thank you for the attention !
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